Search results for "Uranium Compounds"

showing 4 items of 4 documents

Interaction of UO2(2+) with ATP in aqueous ionic media.

2005

Interaction of dioxouranium(VI) (uranyl) ion with ATP was studied by ligand/proton and metal/hydroxide displacement technique, at very low ionic strength and at I=0.15 mol L(-1), in aqueous Me4NCl and NaCl solutions, at t=25 degrees C. Measurements were carried out in the pH range 3-8.5, before the formation of precipitate. Computer analysis allowed us to find the quite stable species UO2(ATP)H2(0), UO2(ATP)H-, UO2(ATP)2-, UO2(ATP)2(6-), UO2(ATP)2H2(4-) and UO2(ATP)(OH)3- whose formation constants are (at I=0 mol L(-1)) logbeta(112)=18.21, logbeta(111)=14.70, logbeta(110)=9.14, logbeta(120)=12.84, logbeta(122)=24.82, and logbeta(11-1)=2.09, respectively. Different values were obtained in th…

SpeciationInorganic chemistryIonic mediaBiophysicsIonic bondingLigandsBiochemistryComplexeIonMetalchemistry.chemical_compoundAdenosine TriphosphateMetals HeavySettore CHIM/01 - Chimica AnaliticaAqueous solutionLigandHydrolysisOrganic ChemistryWaterHydrogen-Ion ConcentrationUranylUranium CompoundsDioxouranium(VI)ATPchemistryStability constants of complexesvisual_artDependence on medium of stability constantvisual_art.visual_art_mediumHydroxideBiophysical chemistry
researchProduct

IR fingerprints of U(VI) nitrate monoamides complexes: a joint experimental and theoretical study.

2010

Infrared spectra of 0.5 mol·L-1 uranium(VI) nitrate monoamide complexes in toluene have been recorded and compared with infrared spectra calculated by DFT. The investigated monoamides were N,N- dimethylformamide (DMF), N,N-dibutylformamide (DBF), and N,N- dicyclohexylformamide (DcHF). The validity of DFT calculations for describing uranium nitrate monoamide complexes has been confirmed as a fair agreement between experimental and calculated spectra was obtained. Furthermore, a topological analysis of the electron density has been carried out to characterize monoamide-uranium interactions. From this work, it appears that the increase of stability of uranylmonoamide complexes may be directly …

Theoretical studyElectron densityTopological analysis Engineering controlled terms: DimethylformamideInorganic chemistryDFT calculationStrontium compoundchemistry.chemical_elementInfrared spectroscopyLigand010402 general chemistryTopology01 natural sciencesElectrostatic interactionSpectral linechemistry.chemical_compoundDelocalized electronNitratePositive charge[CHIM]Chemical SciencesPhysical and Theoretical ChemistryElectron densitieInfrared spectrumSpectroscopyComputingMilieux_MISCELLANEOUSLigand molecule010405 organic chemistrySulfur compoundUraniumTolueneN N-Dimethylformamide0104 chemical sciencesStable complexe[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistrychemistryOrganic solventUraniumPhysical chemistryDegree of polarizationDegree of polarizationMonoamideUranium compounds Engineering main heading: ComplexationTolueneThe journal of physical chemistry. A
researchProduct

A theoretical study of the gas-phase chemi-ionization reaction between uranium and oxygen atoms

2005

The U+O chemi-ionization reaction has been investigated by quantum chemical methods. Potential-energy curves have been calculated for several electronic states of UO and UO+. Comparison with the available spectroscopic and thermodynamic values for these species is reported and a mechanism for the chemi-ionization reaction U+O -> UO++e(-) is proposed. The U+O and Sm+O chemi-ionization reactions are the first two metal-plus-oxidant chemi-ionization reactions to be studied theoretically in this way.

Quantum chemicalMolecular electronic statesChemistryGeneral Physics and Astronomychemistry.chemical_elementUraniumOxygenElectronic statesGas phaseOxygenAtom-atom reactionsAssociative ionisationOxygen atomPotential energy surfacesIonizationddc:540Reaction kinetics theoryPhysics::Atomic and Molecular ClustersUraniumPhysical chemistryPhysics::Atomic PhysicsPhysical and Theoretical ChemistryNuclear ExperimentChain reactionUranium compoundsThe Journal of Chemical Physics
researchProduct

The Effect of Metal Cations on the Aqueous Behavior of Dopamine. Thermodynamic Investigation of the Binary and Ternary Interactions with Cd2+, Cu2+ a…

2021

The interactions of dopamine [2-(3,4-Dihydroxyphenyl)ethylamine, (Dop−)] with cadmium(II), copper(II) and uranyl(VI) were studied in NaCl(aq) at different ionic strengths (0 ≤ I/mol dm−3 ≤ 1.0) and temperatures (288.15 ≤ T/K ≤ 318.15). From the elaboration of the experimental data, it was found that the speciation models are featured by species of different stoichiometry and stability. In particular for cadmium, the formation of only MLH, ML and ML2 (M = Cd2+; L = dopamine) species was obtained. For uranyl(VI) (UO22+), the speciation scheme is influenced by the use of UO2(acetate)2 salt as a chemical; in this case, the formation of ML2, MLOH and the ternary MLAc (Ac = acetate) species in a …

Catechol; Chemical speciation; Metal complexes; Sequestration; Stability constantsMolecular Structurechemical speciation; metal complexes; catechol; sequestration; stability constantsDopaminePharmaceutical ScienceOrganic chemistrysequestrationmetal complexesSodium Chloridecatecholchemical speciationUranium CompoundsAnalytical Chemistrystability constantsQD241-441Chemistry (miscellaneous)CationsDrug DiscoveryMolecular MedicineThermodynamicsSettore CHIM/01 - Chimica AnaliticaPhysical and Theoretical ChemistryCopperCadmiumMolecules
researchProduct